ElasticShell

ElasticShell#

An ElasticShell section is meant to be used with Shells and represents a Gauss point with thickness and that is homogeneous with an Elastic Isotropic material.

Model.section("ElasticShell", tag, E, nu, thickness)
Parameters:
  • tag (integer) – integer tag identifying the section

  • E (float) – Young’s modulus, \(E\)

  • nu (float) – Poisson’s ratio, \(\nu\)

  • thickness (float) – section thickness, \(h\)

The constitutive relationship of a linear elastic isotropic shell is

\[\begin{split}\left(\begin{array}{c} \boldsymbol{p} \\ \boldsymbol{m} \\ \boldsymbol{q} \end{array}\right) =\underbrace{\left[\begin{array}{ccc|ccc|cc} M & \nu M & 0 & 0 & 0 & 0 & 0 & 0 \\ \nu M & M & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & G & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -D & -\nu D & 0 & 0 & 0 \\ 0 & 0 & 0 & -\nu D & -D & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2}(1-\nu) D & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & k G & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & k G \end{array}\right]}_{\mathrm{D}} \left(\begin{array}{c} \overline{\boldsymbol{\epsilon}} \\ \boldsymbol{\kappa} \\ \boldsymbol{\gamma} \end{array}\right)\end{split}\]

where \(M \triangleq \frac{E h}{1-\nu^2}\) is the membrane modulus, \(G \triangleq \frac{E h}{2(1+\nu)}\) is the shear modulus, \(D \triangleq \frac{E h^3}{12\left(1-\nu^2\right)}\) is the bending modulus and \(k \triangleq \frac{5}{6}\) the shear correction factor.