MinUnbalDispNorm#
- Model.integrator("MinUnbalDispNorm", dlam0[, jd, min, max])
Use the minimum unbalanced displacement norm continuation method [1]
- Parameters:
dlam0 (float) – First load increment (pseudo-time step) at the first iteration in the next invocation of the analysis command.
jd (float) – Factor relating first load increment at subsequent time steps. (optional, default: 1.0)
min (float) – arguments used to bound the load increment (optional, default: dlam0)
max (float) – arguments used to bound the load increment (optional, default: dlam0)
- integrator MinUnbalDispNorm $dlambda11 <$Jd $minLambda $maxLambda>
Argument |
Type |
Description |
---|---|---|
$dlambda11 |
float |
First load increment (pseudo-time step) at the first iteration in the next invocation of the analysis command. |
$Jd |
float |
Factor relating first load increment at subsequent time steps. (optional, default: 1.0) |
$minLambda |
float |
arguments used to bound the load increment (optional, default: $dLambda11) |
$maxLambda |
float |
arguments used to bound the load increment (optional, default: $dLambda11) |
Theory#
Continuation#
In this method, the constraint equation governing the evolution of \(\Delta \lambda\) is
which guarantees a minimum value for the unbalanced displacement norm in each iteration. Evaluating the constraint equation furnishes
Incrementation#
The load increment at iteration \(i\), \(d\lambda_{1,i}\) , is related to the load increment at \((i-1)\), \(d\lambda_{1,i-1}\), and the number of iterations at \((i-1)\), \(J_{i-1}\), by the following: