MinUnbalDispNorm

MinUnbalDispNorm#

Model.integrator("MinUnbalDispNorm", dlam0[, jd, min, max])

Use the minimum unbalanced displacement norm continuation method [1]

Parameters:
  • dlam0 (float) – First load increment (pseudo-time step) at the first iteration in the next invocation of the analysis command.

  • jd (float) – Factor relating first load increment at subsequent time steps. (optional, default: 1.0)

  • min (float) – arguments used to bound the load increment (optional, default: dlam0)

  • max (float) – arguments used to bound the load increment (optional, default: dlam0)

Theory#

Continuation#

In this method, the constraint equation governing the evolution of \(\Delta \lambda\) is

\[\frac{\partial}{\partial \Delta \lambda}\left. d \boldsymbol{u} \cdot d \boldsymbol{u}\right.=0\]

which guarantees a minimum value for the unbalanced displacement norm in each iteration. Evaluating the constraint equation furnishes

\[d \lambda = -\frac{d\hat{\boldsymbol{u}} \cdot d\bar{\boldsymbol{u}}}{d\hat{\boldsymbol{u}} \cdot d\hat{\boldsymbol{u}}}\]

Incrementation#

The load increment at iteration \(i\), \(d\lambda_{1,i}\) , is related to the load increment at \((i-1)\), \(d\lambda_{1,i-1}\), and the number of iterations at \((i-1)\), \(J_{i-1}\), by the following:

\[d\lambda_{1,i} = d\lambda_{1,i-1}\frac{J_d}{J_{i-1}}\]

References#