J2 Plasticity#

Tension test of a coupon using the \(J_2\) plasticity model from the STAIRLab gallery.#
J2Plasticity is a multi dimensional material model that incorporates plasticity using the von Mises \(J_2\) yield criterion, with nonlinear isotropic hardening.
- Model.nDMaterial("J2", tag, K, G, Fy, Fs, Hsat, Hiso)
- Parameters:
tag (integer) – unique tag identifying material
K (float) – Bulk modulus, \(\kappa\) [1]
G (float) – Shear modulus, \(\mu\) [1]
Fy (float) – Initial yield stress, \(F_y\) [1]
Fs (float) – Saturation yield stress
Hsat (float) – exponential hardening parameter
Hiso (float) – linear isotropic hardening modulus
- nDMaterial J2Plasticity $tag $K $G $sig0 $sigInf $delta $Hiso <$eta>;
Argument |
Type |
Description |
---|---|---|
tag |
integer |
unique tag identifying material |
K |
float |
bulk modulus |
G |
float |
shear modulus |
sig0 |
float |
initial yield stress |
sigInf |
float |
final saturation yield stress |
delta |
float |
exponential hardening parameter |
H |
float |
linear hardening parameter |
Notes#
Parameters#
K
- Bulk modulus \(\kappa\)G
- Shear modulus \(\mu\)E
- Young’s modulus \(E\)Note
Updates to \(E\) are performed at constant Poisson ratio \(\nu\).
Fy
- Initial yield stress \(F_y\)
Examples#
nDMaterial J2 [incr i] -E $E -G $G $Fy $Fs $Hsat $Hiso $eta
nDMaterial J2 [incr i] -E $E -G $G $Fy $Fs $Hsat $Hiso $eta -density $density
nDMaterial J2 [incr i] -E $E -nu $nu $Fy $Fs $Hsat $Hiso $eta -density $density
Theory#
In the elastic range, the material response follows an Elastic Isotropic formulation:
Plastic response is distinguished by the yield function \(f\)
where \(\bar{\epsilon}_{\mathrm{p}}\) is the scalar equivalent plastic tensile strain, and \(q^{\mathrm{iso}}\) is a scalar function that defines the saturation isotropic hardening given by:
Note
This is identical to the hardening function for Drucker Prager, when \(F_y \equiv F_0\).
This hardening rule is equivalent to the model implemented by FEAP. The flow rules are
where \(\gamma\) is the plastic consistency parameter and \(\boldsymbol{E}_{\mathrm{p}}\) is the plastic strain tensor. linear viscosity is exhibited with \(\gamma = \frac{\phi}{\eta}\) ( if \(\phi > 0\) )
Backward Euler integration is employed in the implementation.
Note
For linear isotropic hardening, set \(F_{\infty} = F_0\)
For rate independent cases, set \(\eta = 0\).
References#
Code Developed by: Ed Love