Plastic#
- Model.uniaxialMaterial("Plastic", tag, E, Fy, Hiso, Hkin, eta=None)
Define a plastic material with linear isotropic and kinematic hardening.
- Parameters:
tag (integer) – unique tag identifying material
E (float) – elastic modulus, \(E\)
Fy (float) – yield stress, \(F_y\)
Hiso (float) – isotropic hardening modulus
Hkin (float) – kinematic hardening modulus
eta (float) – optional parameter
Theory#
This model implements a 1D specialization of the J2 Plasticity material, without the nonlinear exponential hardening option.
Examples#
import xara
model = xara.Model(ndm=3)
Fy = 50
E = 29e3
G = 11.2e3
K = 3
nu = 0.24
Hiso = 20e3
Hkin = 10e3
# All positional arguments
model.uniaxialMaterial("Steel", 1, E, Fy, Hiso, Hkin)
# Mix keywords and positional arguments
model.uniaxialMaterial("Steel", 2, E, Fy, Hiso=Hiso, Hkin=Hkin)
# All keyword arguments
model.uniaxialMaterial("Steel", 4, Fy=Fy, E=E, Hkin=Hkin, Hiso=Hiso)
model.uniaxialMaterial("Steel", 5, Fy=Fy, G=G, nu=nu, Hkin=Hkin, Hiso=Hiso)
# Legacy
model.uniaxialMaterial("Hardening", 9, E, Fy, Hiso, Hkin)
model.print(json=True)
model BasicBuilder -ndm 3 -ndf 6
set Y 50
set E 29e3
set G 11.2e3
set nu 0.24
set Hiso 20e3
set Hkin 10e3
# All positional arguments
uniaxialMaterial Steel 1 $E $Y $Hiso $Hkin
# Mix keywords and positional arguments
uniaxialMaterial Steel 2 $E $Y -Hiso $Hiso -Hkin $Hkin
uniaxialMaterial Steel 3 -Hiso $Hiso -Hkin $Hkin $E $Y
# All keyword arguments
uniaxialMaterial Steel 4 -Fy $Y -E $E -Hkin $Hkin -Hiso $Hiso
uniaxialMaterial Steel 5 -Fy $Y -G $G -nu $nu -Hkin $Hkin -Hiso $Hiso
# Legacy
uniaxialMaterial Hardening 9 $E $Y $Hiso $Hkin
print -json